Рис. 1. Восхитительные узоры на крыльях бабочек складываются из отдельных чешуек, различающихся по цвету, форме и строению. Окраска одних чешуек определяется пигментами, других — тонкослойной интерференцией. Каждая чешуйка одноцветна и образуется единственной клеткой. Фото Linden Gledhill с сайта notcot.com
Промышленный меланизм березовой пяденицы давно вошел в учебники как яркий пример эволюции в действии. Однако до сих пор не была известна природа мутации, породившей черную (меланистическую) форму березовой пяденицы, распространившуюся в индустриальных районах в связи с потемнением стволов деревьев. Британские генетики показали, что появление темных бабочек было связано со встраиванием транспозона в ген cortex, регулирующий деление клеток. Одновременно другая группа исследователей обнаружила, что варианты (аллели) этого гена коррелируют с различными элементами орнамента у самых разных бабочек. Судя по всему, ген cortex был привлечен к раскрашиванию крыльев еще на заре эволюции бабочек. Каким образом регулятор клеточных делений управляет окраской крыльев, пока неясно.
Черная форма carbonaria березовой пяденицы Biston betularia впервые была зарегистрирована в Манчестере в 1848 году. В дальнейшем она стала быстро распространяться. Во время промышленной революции в Англии из-за загрязнения воздуха резко сократилось количество лишайников на стволах деревьев. Поэтому бабочки исходной, светлой формы (typica), незаметные на фоне светлых лишайников, стали бросаться в глаза на темной голой коре. Избирательное выедание птицами светлых бабочек привело к тому, что частота встречаемости формы carbonaria в промышленных районах Англии выросла от 0 до 99%. Но триумф черных бабочек был недолгим: в 1960–1970-е годы борьба с загрязнением воздуха стала приносить ощутимые плоды, и лишайники постепенно вернулись на стволы деревьев. Частота встречаемости формы carbonaria начала снижаться и к настоящему времени упала до 5%. Аналогичные процессы на фоне индустриализации происходили с несколькими десятками видов бабочек в разных странах.
Промышленный меланизм березовой пяденицы давно вошел в учебники как типичный пример адаптивных изменений под действием отбора в изменившихся условиях среды. Пожалуй, это вообще самый известный пример наблюдаемой эволюции. При этом, как ни странно, до сих пор не была идентифицирована конкретная мутация, от которой у бабочек почернели крылья. Лишь недавно удалось, комбинируя классические методы генетики (то есть скрещивания и анализ расщепления признаков у потомства) и современные методы секвенирования и анализа нуклеотидных последовательностей, выявить участок генома длиной менее 400 кб (килобаз, тысяч пар оснований), в котором находится искомая мутация. Этот участок включает 13 белок-кодирующих генов и два гена микро-РНК. Удалось также показать, что распространившаяся в популяциях березовой пяденицы доминантная мутация carbonaria возникла единожды и совсем недавно (A. E. van’t Hof et al., 2011. Industrial melanism in British peppered moths has a singular and recent mutational origin). Разумеется, это не значит, что другие мутации, приводящие к меланизму, никогда не возникали. Это значит лишь, что данный конкретный случай промышленного меланизма у данного вида бабочек был связан с распространением только одной такой мутации, возникшей недавно.
Британские генетики, получившие этот результат, не остановились на достигнутом. В своей новой статье, опубликованной в последнем выпуске журнала Nature, они сообщили об успешной расшифровке молекулярной природы мутации carbonaria. Для этого пришлось тщательно отсеквенировать упомянутый участок генома у 110 черных и 283 светлых особей Biston betularia.
Оказалось, что полиморфизмы (различия нуклеотидной последовательности), коррелирующие с окраской крыльев, концентрируются только в одном из 13 генов, а именно в гене cortex. В пределах этого гена таких полиморфизмов оказалось довольно много, но только один из них встречается исключительно у черных бабочек (у 105 особей из 110) и не был встречен ни у одной светлой особи. Очевидно, именно этот полиморфизм и является искомой мутацией carbonaria, а все остальные полиморфизмы, чаще встречающиеся у черных бабочек, чем у светлых, распространились вместе с ним за счет сцепленного наследования (генетического автостопа, см. Genetic hitchhiking).
Природа мутации carbonaria оказалась весьма интересной: это не что иное, как крупный (21 925 нуклеотидов) мобильный элемент (транспозон), встроившийся в первый интрон гена cortex (рис. 2). Таким образом, получено еще одно наглядное подтверждение способности транспозонов производить полезные наследственные изменения (разумеется, полезность и вредность мутаций зависят от условий, и мутация carbonaria была полезна лишь в условиях сильного промышленного загрязнения).
Рис. 2. Структура гена cortex у черной и светлой форм березовой пяденицы (вверху) и фрагмент этого гена, в который у черных бабочек встроен транспозон (внизу). Пронумерованные вертикальные штрихи (1A, 1B, 2–9) обозначают экзоны. Черные вертикальные линии на фоне горизонтальной серой полосы показывают расположение полиморфизмов, коррелирующих с черной окраской. Сам транспозон состоит из участка длиной 9 кб (тысяч пар оснований), повторенного 2,3 раза (RU — repeat unit). Характерная «роспись», по которой можно безошибочно распознать ДНК-транспозон класса II, перемещающийся методом «cut-and-paste», — это обращенные концевые повторы (TGTAAC…GTTACA, выделены красным), являющиеся неотъемлемой функциональной частью транспозона, и прямые повторы (CCTC…CCTC), которые образуются как побочный результат встраивания транспозона в хозяйский геном. Рисунок из обсуждаемой статьи A. E. van’t Hof et al. в Nature
Авторы показали, что встраивание транспозона привело к усилению экспрессии гена cortex на той стадии развития личинки, когда происходит наиболее интенсивный рост зачатков крыльев. Ген имеет две альтернативные точки начала транскрипции (1A и 1B на рис. 2), поэтому на его основе синтезируется два варианта (изоформы) белка. Как выяснилось, встроенный транспозон усиливает экспрессию только одной из двух изоформ, более массовой (1B).
Анализ распределения полиморфизмов в окрестностях ключевой мутации подтвердил, что мутация carbonaria возникла недавно (скорее всего, в первой половине XIX века) и быстро распространилась под действием отбора. Хотя эпоха грязного воздуха, давшая преимущество черным бабочкам, длилась недолго, их короткий триумф оставил в их геномах характерные следы (см. Selective sweep). Чем ближе к месту встройки транспозона, тем чаще в пределах гена cortex у черных бабочек встречаются строго определенные полиморфизмы — те самые, которые имелись у счастливой первой обладательницы мутации carbonaria и затем распространились за счет генетического автостопа.
Что касается тех пяти черных бабочек, у которых нет транспозона в интроне гена cortex, то это, судя по всему, носители альтернативных аллелей того же гена, которые обычно обеспечивают вариант окраски insularia, промежуточный между typica и carbonaria. Ранее уже было известно, что аллели insularia изредка порождают очень темные фенотипы, практически неотличимые от carbonaria.
В том же выпуске Nature опубликована статья другого, более многочисленного международного исследовательского коллектива, в которой показана ведущая роль гена cortex в эволюции окраски крыльев у ряда других бабочек (рис. 3). Основное внимание в этом исследовании было уделено тропическим бабочкам рода Heliconius, у которых широко распространена мимикрия, а окраска крыльев крайне разнообразна (см. Зафиксирован начальный этап видообразования у тропических бабочек, «Элементы», 09.11.2009).
Рис. 3. Один и тот же участок генома обеспечивает вариации окраски у разных бабочек. Справа — схема хромосомы, на которой разными цветами обозначены гомологичные участки, а серым выделен фрагмент, содержащий ген cortex, изменения которого влияют на окраску крыльев. У Heliconius erato данный локус контролирует наличие или отсутствие желтой полосы на задних крыльях, у H. melpomene — желтые полосы на обеих парах крыльев, у H. numata — черные, желтые и оранжевые элементы узора, обеспечивающие сходство с бабочками рода Melinaea (пример мимикрии). Рисунок из обсуждаемой статьи N. J. Nadeau et al. в Nature
Оказалось, что у разных видов Heliconius самые разнообразные элементы орнамента крыльев — черные, желтые, оранжевые пятна и полосы — коррелируют с полиморфизмами в гене cortex (рис. 3). Как правило, ключевые полиморфизмы находятся в некодирующих областях гена, в том числе в интронах. Это значит, что эволюционные изменения орнамента крыльев были связаны с изменениями регуляции гена cortex, а не структуры кодируемого им белка. По-видимому, в некоторых случаях полиморфизмы, связанные с окраской крыльев, влияют на альтернативный сплайсинг, которому подвергается cortex, и меняют уровень экспрессии и соотношение изоформ в зачатках крыльев.
Ген cortex не относится к числу генов, которые можно было заподозрить в причастности к раскраске крыльев. Он входит в семейство генов, регулирующих деление клеток. Гены этого семейства активируют комплекс стимуляции анафазы, что способствует разделению сестринских хромосом во время клеточного деления. У дрозофилы ген cortex задействован в регуляции мейоза в яичниках самки и не имеет никакого отношения к окраске крыльев. Авторы второй статьи проверили, что будет, если ген cortex бабочки Heliconius melpomene заставить работать в зачатках крыльев дрозофилы — и это не привело ни к какому видимому эффекту.
Судя по всему, ген cortex, изначально не связанный с окраской, был привлечен к работе над орнаментом крыльев около 100 млн лет назад, на заре эволюции бабочек, и с тех пор неоднократно подвергался интенсивному отбору в разных эволюционных линиях.
Таким образом, генетические основы эволюции узоров на крыльях бабочек постепенно проясняются. Мы уже знаем, что в формировании узоров задействованы сигнальные белки и регуляторы транскрипции, которые обычно (у других животных, да и у тех же бабочек) выполняют совершенно другие функции. Увлекательный рассказ об этих исследованиях читатель найдет в главе 8 книги Шона Кэрролла «Бесконечное число самых прекрасных форм». Например, за красные пятна на крыльях Heliconius отвечает ген optix, важнейший регулятор развития глаз (см. Найден ген, отвечающий за эволюцию окраски у бабочек, «Элементы», 31.08.2011). В центре будущих ярких круглых пятен (глазков), например, у бабочек Bicyclus (см.: Самцы и самки меняются ролями при смене погоды, «Элементы», 27.12.2012), экспрессируется ген distal-less (dll), участвующий в закладке конечностей — да и вообще любых отростков тела — у самых разных животных. Что общего между глазом насекомого и красным пятном на крыле? Разве что красный пигмент, но эта связь скорее всего случайна. Что общего между глазком на крыле и ногой? Здесь связь может оказаться более существенной: и то, и другое в ходе развития возникает сначала как некий кружочек, «нарисованный» в определенном месте развивающегося организма экспрессией сигнального белка, который производится в центре кружка.
Ген cortex отличается от найденных ранее генов орнаментации крыльев бабочек тем, что он кодирует не транскрипционный фактор и не сигнальный белок, выделяемый клетками наружу для межклеточного общения. Транскрипционные факторы и сигнальные белки легко приобретают новые функции: это профессиональные переключатели и регуляторы работы генов, которым всё равно, какие гены регулировать. Но cortex — специфический регулятор клеточных делений, который у дрозофилы обслуживает процесс созревания яйцеклеток. Его вовлеченность в раскрашивание крыльев бабочек приоткрывает какие-то новые грани в эволюционной биологии развития. Каким образом cortex влияет на окраску крыльев, неясно. Однако нужно иметь в виду, что узор на крыльях бабочек сложен из чешуек, каждая из которых формируется из единственной клетки (рис. 1). Динамика процессов деления и миграции клеток, которым суждено стать чешуйками того или иного цвета, на стадии поздней личинки и куколки, очевидно, влияет на итоговый орнамент, но конкретные механизмы этого влияния еще предстоит выяснить.
Источник: elementy.ru